Abstract

AbstractDiffusion is a key property determining the suitability of nanocrystalline materials for use in numerous applications, and it is crucial to the assessment of the extent to which the interfaces in nanocrystalline samples differ from conventional grain boundaries. The present article offers an overview of diffusion in nanocrystalline metals and alloys. Emphasis is placed on the interfacial characteristics that affect diffusion in nanocrystalline materials, such as structural relaxation, grain growth, porosity, and the specific type of interface. In addition, the influence of intergranular amorphous phases and intergranular melting on diffusion is addressed, and the atomistic simulation of GB structures and diffusion is briefly summarized. On the basis of the available diffusion data, the diffusion‐mediated processes of deformation and induced magnetic anisotropy are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.