Abstract

It has been found in many experiments that the mean square displacement of a Brownian particle x(T) diffusing in a rearranging environment is strictly Fickian, obeying ⟨(x(T))(2)⟩ ∝ T, but the probability distribution function for the displacement is not Gaussian. An explanation of this is that the diffusivity of the particle itself is changing as a function of time. Models for this diffusing diffusivity have been solved analytically in the limit of small time, but simulations were necessary for intermediate and large times. We show that one of the diffusing diffusivity models is equivalent to Brownian motion in the presence of a sink and introduce a class of models for which it is possible to find analytical solutions. Our solution gives ⟨(x(T))(2)⟩ ∝ T for all times and at short times the probability distribution function of the displacement is exponential which crosses over to a Gaussian in the limit of long times and large displacements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.