Abstract

The photon upconversion based on sensitized triplet–triplet annihilation (sTTA-UC) is a spin-flip mechanism exploited to recover the energy stored on dark triplet states in conjugated systems. In this process, a high-energy fluorescent singlet is created through the collision and fusion of two low-energy triplets belonging to different diffusing molecules. Its high yield in solution under low excitation intensity and noncoherent light highlighted the huge potential of sTTA-UC to provide a breakthrough in solar technologies. However, its diffusion-limited nature restrains its efficiency in the solid state. To overcome this issue, we propose a single-molecule system that is able to host simultaneously more than one triplet, thus enabling a diffusion-free intramolecular TTA. We obtain the first direct demonstration of intramolecular triplet fusion by tailored photoluminescence spectroscopy experiments, thus opening the way to realize a new family of single-molecule upconverters with huge potential in solar and lighting technologies by accessing the natural triplets’ energy reservoir.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call