Abstract
Noise is a growing concern in the built environment. Sound absorbers are a viable option for noise treatment. However, the characterization of their absorption coefficient in standardized measurement chambers still show challenges for high accuracy as required in practice. In recent years, experimental analysis has shown that assumptions of diffuse sound fields made in well-known reverberation chambers are unfulfilled. Specifically, that sound intensities in chamber-based measurement methods are presumed to be isotropic or diffuse. Diffusion equation models have shown dramatic changes in energy flow in the presence of highly absorptive materials under test. This has been attributed to well-documented inconsistencies reported from reverberation chamber measurements across different laboratories. This work will demonstrate that the diffusion equation model is proving to be a computationally efficient and viable method for predicting sound energy flows, garnering an increasing amount of interest from the acoustical community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: INTER-NOISE and NOISE-CON Congress and Conference Proceedings
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.