Abstract
Carrier mobility is one of the crucial parameters determining the electronic device performance. We apply the light-induced transient grating technique to measure independently the carrier diffusion coefficient and lifetime, and to reveal the impact of additives on carrier transport properties in wet-cast CH3NH3PbI3 (MAPbI3) perovskite films. We use the high excitation regime, where diffusion length of carriers is controlled purely by carrier diffusion and not by the lifetime. We demonstrate a four-fold increase in diffusion coefficient due to the reduction of localization center density by additives; however, the density dependence analysis shows the dominance of localization-limited diffusion regime. The presented approach allows us to estimate the limits of technological improvement-carrier diffusion coefficient in wet-cast layers can be expected to be enhanced by up to one order of magnitude.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.