Abstract

Frequency-dependent selection reflects the interaction between different species as they battle for limited resources in their environment. In a stochastic evolutionary game the species relative fitnesses guides the evolutionary dynamics with fluctuations due to random drift. A selection advantage which depends on a changing environment will introduce additional possibilities for the dynamics. We analyse a simple model in which a random environment allows competing species to coexist for a long time before a fixation of a single species happens. In our analysis we use stability in a linear combination of competing species to approximate the stochastic dynamics of the system by a diffusion on a one dimensional co-existence region. Our method significantly simplifies approximating the probability of first extinction and its expected time, and demonstrates a rigorous model reduction technique for evaluating quasistationary properties of stochastic evolutionary dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.