Abstract

Time-dependent laser reflectometry measurements are presented as a means to rigorously characterize analyte diffusion dynamics of small molecules from mesoporous silicon (PSi) films for drug delivery and membrane physics applications. Calculations based on inclusion of a spatially and temporally dependent solute concentration profile in a one-dimensional Fickian diffusion flow model are performed to determine the diffusion coefficients for the selected prototypical polar species, sucrose (340 Da), exiting from PSi films. The diffusion properties of the molecules depend on both PSi pore size and film thickness. For films with average pore diameters between 10-30 nm and film thicknesses between 300-900 nm, the sucrose diffusion coefficient can be tuned between approximately 100 and 550 μm2/s. Extensions of the real-time measurement and modeling approach for determining the diffusivity of small molecules that strongly interact with and corrode the internal surfaces of PSi films are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.