Abstract

The Hopf bifurcation for the Brusselator ordinary-differential-equation (ODE) model and the corresponding partial-differential-equation (PDE) model are investigated by using the Hopf bifurcation theorem. The stability of the Hopf bifurcation periodic solution is discussed by applying the normal form theory and the center manifold theorem. When parameters satisfy some conditions, the spatial homogenous equilibrium solution and the spatial homogenous periodic solution become unstable. Our results show that if parameters are properly chosen, Hopf bifurcation does not occur for the ODE system, but occurs for the PDE system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.