Abstract

The results of a numerical study of the pulsed outflow of hydrogen into an air-filled channel are presented. The adjustable parameters were the initial pressure of hydrogen in the reservoir and the distance from the diaphragm to the ignition point. The pressure, temperature, and water vapor mass fraction profiles along the channel wall at various moments of time were calculated. The autoignition parameters were calculated with account of turbulence, boundary layer formation, heat transfer, and diaphragm opening time. It was demonstrated that the boundary layer effect promotes hydrogen autoignition. The dependence of the distance from the diaphragm to the autoignition point was calculated as a function of the pressure in the reservoir with hydrogen. The simulation results were found to be in close agreement with the available experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.