Abstract

We reported experimental measurements of the diffusion coefficient of methane at effectively infinite dilution in methylbenzene and in heptane at temperatures ranging from (323 to 398) K and at pressures up to 65 MPa. The Taylor dispersion method was used and the overall combined standard relative uncertainty was 2.3%. The experimental diffusion coefficients were correlated with a simple empirical model as well as the Stokes–Einstein model with the effective hydrodynamic radius of methane depending linearly upon the solvent density. The new data address key gaps in the literature and may facilitate the development of an improved predictive model for the diffusion coefficients of dilute gaseous solutes in hydrocarbon liquids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.