Abstract
Facilitating a new concept of clean diesel combustion using supercritical fluids requires a better understanding of thermophysical properties of the diesel fuel/diluent system. Mass diffusivity is one such property that is important to understand diesel fuel/diluent mixing and spray and combustion of supercritical fuel mixtures. In this work, diffusion coefficients of diesel fuel and surrogate compounds in supercritical carbon dioxide were experimentally determined by the Taylor dispersion method at temperatures from 313.15 to 373.15 K and pressures up to 30 MPa. Difficulties were encountered to measure diffusion coefficients using the Taylor dispersion method near the critical region of CO 2 which resulted in curve-fitting errors greater than 5%. Predictive correlations including Wilke–Chang, Scheibel, and He–Yu were examined. Diffusivity data were also fitted by D 12/ T − η and D 12 / T − ρ correlations. Results showed that the He–Yu correlation has the best prediction performance while the D 12/ T − η correlation best fits the data with AAD% < 8%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.