Abstract

In this work, we investigate the transport of ions through graphene nanopores driven by concentration gradients through molecular dynamics simulations. The diffusion coefficients, D, of K+ and Cl− are computed for various pore sizes and porosities. It is found that D is sensitive to the pore size when the pore diameter is smaller than 3 nm. For relatively large pores, D remains largely independent of the pore size. The dependence of D on the porosity shows a near-linear relationship. The effects of pore size and porosity on the diffusion coefficient are caused by the free energy barrier at the pore due to the ion–pore molecular interactions and the dehydration of ions. A general scaling law for the diffusion coefficient is also proposed. The results in this work provide useful information for the design and fabrication of nanoporous structures for ion transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.