Abstract

Because of their direct contact with society, urban buses are prioritized targets for air quality improvement. In this study, a sample group of in-use urban old buses powered by compressed natural gas (CNG) and diesel engines was chosen for particle emission analysis. The CNG buses do not have any type of after-treatment, while diesel ones are equipped with a diesel particulate filter (DPF). To measure the lung deposited surface area (LDSA), a possible physical metric of exhaust particles' toxicity, a diffusion charger-based analyzer was utilized. The measurements were done at different engine speeds in stationary conditions. The results revealed that although the particle mass emission of CNG buses remains at a low level, the number of emitted particles for 75% of the CNG buses (depending on their maintenance conditions) is 10 to 100 times more than the retrofitted diesel ones, with the range of 106 to 107p/cm3. The rest 25% of the CNG buses were performing the same as the retrofitted diesel ones in terms of exhaust particle number in the range of 105p/cm3. In addition, the lowest LDSA parameter at low idle engine speed was measured to be 97.8 and 229.4μm2/cm3 for a CNG and a DPF retrofitted diesel bus, respectively. This result indicates the same and even lower LDSA and surface area and thus the lower possible toxic potentiality of exhaust particles of CNG buses compared to diesel vehicles at DPF downstream. Investigation on the different behavior of the CNG buses in the emission of particles showed the correlation of some aging parameters such as lubricant oil aging mileage with the released particles and the importance of periodic maintenance interval. Graphical abstract.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.