Abstract

A diffusion-based technique of microalloying aluminium powder metallurgy products was examined to expand the range of feasible alloying additions. Thermodynamic calculations and diffusion rates for several elements suggested that tin and silver were the most promising; these elements were successfully alloyed into AA 2014 on both a macroscopic and a microscopic scale. The final microstructures were examined using X-ray diffraction, X-ray mapping and energy-dispersive electron probe microanalysis. Silver additions were homogeneous throughout the alloy microstructure, whereas tin was concentrated in intergranular regions only. The results suggested that the technique was viable for a variety of microalloying elements. Also, the extent of alloying was predicted reasonably well using a mathematical mass balance model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.