Abstract
AbstractThe fluorinated low-k dielectrics SiO:F and Teflon AF were investigated for process integration with aluminum and copper interconnects. To minimize fluorine diffusion, several potential barrier materials were deposited onto the fluorinated dielectrics and characterized after heat treatment at temperatures up to 450°C. The barrier layers studied include conventional materials such as Ta, TaN, and TiN, in addition to several novel materials. Barrier layer materials were deposited using evaporation, and sputtering. The materials were characterized using nuclear reaction analysis (NRA) to determine the fluorine concentration profile. A reaction zone was noted at the dielectric-barrier interface on several samples, corresponding to the formation of a fluoride complex. In some instances, this fluoride layer was self-limiting and prevented further fluorine diffusion through the remainder of the barrier layer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.