Abstract

Traditional equivalent circuit models (ECMs) have difficulties in estimating battery internal states due to the lack of relevant physics, such as the lithium diffusion in active particles. Here we configure a circuit network to describe the lithium diffusion and define it as a new high-level circuit element called diffusion-aware voltage source. The circuit representation is proven equivalent to the discretized diffusion equation. The new voltage source gives the electrode potential as a function of the surface concentration and thus automatically incorporates the diffusion overpotential. We show that an ECM with the proposed diffusion-aware voltage sources (called “shell ECM”) can reproduce the single particle model simulation results, making it a trustworthy easy-to-implement substitute. Furthermore, the simplest shell ECM consisting of a single diffusion-aware voltage source and a resistor is validated against experimental constant-current discharges at various rates. The diffusion-aware voltage source can be used to measure diffusivity by fitting the diffusion resistance against experimental data. The viability of the shell ECM for onboard usage is confirmed by implementation into a battery management system of WAE Technologies. By tracking the internal concentration states, the shell ECM demonstrates robustness to dynamic applied-current profiles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.