Abstract

We consider the dc transport properties of topological insulator surface states in the presence of uncorrelated point-like disorder, both in the classical and quantum regimes. The dc conductivity of those two-dimensional surface states depends strongly on the amplitude of the hexagonal warping of their Fermi surface. A perturbative analysis of the warping is shown to fail to describe the transport in Bi2Se3 over a broad range of experimentally available Fermi energies, and in Bi2Te3 for the higher Fermi energies. Hence we develop a fully non-perturbative description of these effects. In particular, we find that the dependence of the warping amplitude on the Fermi energy manifests itself in a strong dependence of the diffusion constant on this Fermi energy, leading to several important experimental consequences. Moreover, the combination of a strong warping with an in-plane Zeeman effect leads to an attenuation of conductance fluctuations in contrast to the situation of unwarped Dirac surface states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.