Abstract

Diffusion at the polymer/polymer interface was probed by small-amplitude oscillatory shear measurements carried out on polystyrene (PS)/polystyrene (PS) sandwich-like assembly as a function of the time of welding in the molten state. It was found that the dynamic complex shear modulus G*(t) at a fixed frequency increases with the time of contact in two time regimes. First G*(t) increases proportionally to t1/2 and then a second regime takes place where G*(t) increases proportionally to t1/4. At longer times, G*(t) tends asymptotically toward G* of pure polystyrene. The results were interpreted in terms of reptation theory and the time of transition between the two scaling law regimes was found to be in agreement with the time needed for the transition from the Rouse mode to the reptation mode. Special attention was given to the initial state of the polymer surfaces before contact by performing experiments on (i) freshly prepared surfaces, (ii) presheared samples, (iii) fractured samples, and (iv) corona-t...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.