Abstract
It is shown that solutions to linear first-order stochastic difference equations with stationary autocorrelated coefficients converge weakly inD[0,1] to an Ito stochastic integral plus a correction term when the time scale is shifted so that the means, variances, and covariances of the coefficients all approach zero at the same rate. Other limit theorems applicable to different time scale shifts are also given. These results yield two different continuous time limits to a recent model of Roughgarden (1975) for population growth in stationary random environments. One limit, an Ornstein-Uhlenbeck process, is applicable in the presence of rapidly fluctuating autocorrelated environments; the other limit, which is not a diffusion process, applies to the case of slowly varying, highly autocorrelated environments. Other applications in population biology and genetics are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Journal of Applied Probability
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.