Abstract

Resonance-line scattering in static low density media with large optical thickness has a diffusive behavior in both space and frequency because photons belonging to the Lorentzian wings of the line may be scattered almost monochromatically a very large number of times. This diffusive behavior holds on frequency scales and spatial scales, χ c and τ c , much larger than the scales associated with one elementary scattering of a wing-photon. A method developed for diffusion approximations in neutron transport theory, suitably generalized to handle diffusion in frequency space, is applied to the case of conservative scattering in a bounded medium with interior sources and zero incoming radiation. The method is to separate the line radiation field into an interior part and a boundary layer part which goes to zero in the interior. Each part is expanded in terms of a small parameter ϵ, which is the ratio of the mean free-path at frequency χ c to the characteristic spatial scale τ c . It is shown that the leading term in the interior asymptotic expansion is isotropic, zero on the boundary, and obeys a space and frequency diffusion equation. In the boundary-layer expansion, the leading term is of order ϵ and is a solution to a monochromatic transfer equation in a semi-infinite, plane-parallel medium. The emergent radiation field is shown to be of order ϵ and proportional to the gradient of the interior solution at the boundary. Its angular dependence, in the case of isotropic scattering in the atom frame, is given by the Ambartsoumian H-function. A comparison is presented between numerical solutions of the full transfer equation and asymptotic solutions. Non-conservative scattering and time-dependent problems are briefly discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.