Abstract
We consider simple models of congestion control in high-speed networks and develop diffusion approximations which could be useful for resource allocation. We first show that, if the arrival process is Poisson and the service times are exponential, then, under a certain scaling, the steady-state distribution of the number of sources in the system consists of appropriately normalized and truncated Gaussian and exponential distributions. We then consider the case where the arrival process is a general renewal process with finite coefficient of variation and service-time distributions that are phase-type, and show the impact of these distributions on the steady-state distribution. We use these results to relate the capacity of a bottleneck node to performance measures of interest for best-effort traffic, such as the mean file transfer time or probability of congestion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.