Abstract

We derive the hydrodynamic limit of a kinetic equation with a stochastic, short range perturbation of the velocity operator. Under some mixing hypotheses on the stochastic perturbation, we establish a diffusion-approximation result: the limit we obtain is a parabolic stochastic partial differential equation on the macroscopic parameter, the density here.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.