Abstract
Carbon-based materials generated from biowaste have recently attracted interest due to their exceptional surface and conductive properties. Cow dung derived porous carbon (CDPC) with a 3D structure and linked pores is synthesized in this study, making it an alternative electrode for supercapacitors (SC). Herein, we studied the diffusion and surface charge contribution and their relationship with the scan rate. Diffusion charge contribution is more prevalent at lower scan rates. Furthermore, a large fraction of surface charge contribution of 69.2 % at a high scan rate of 100 mV/s indicates rapid electrochemical kinetics and hence high-rate performance even at higher current densities. In addition, utilizing a 1 M H 2 SO 4 electrolyte, the CDPC electrode has attained a high specific capacitance value of 210 F/g at 0.5 A/g. Furthermore, symmetrical solid-state SC device displayed high energy density of 36 Wh/kg at good power density of 800 W/kg along with remarkable cyclic stability of 92.6 % after 10,000 charge-discharge cycles. Hence, these findings demonstrate that investigating surface and diffusion charge contributions opens up new avenues for tuning the supercapacitor performance. • Waste cow dung derived carbon obtained by hydrothermal carbonization and activation • Surface and diffusion charge contribution studies are performed for CDPC electrode. • Solid-state symmetrical SC assembled using two CDPC electrodes and gel electrolyte • Device retains long cycle life of 92.6 % after 10,000 charge-discharge cycles. • Device delivers high energy density of 40 Wh/kg at a power density of 907 W/kg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.