Abstract

Developmental venous anomalies are the most common intracranial vascular malformation. Increased signal-intensity on T2-FLAIR images in the areas drained by developmental venous anomalies are encountered occasionally on brain imaging studies. We evaluated diffusion and perfusion MR imaging findings of the abnormally high signal intensity associated with developmental venous anomalies to describe their pathophysiologic nature. We retrospectively reviewed imaging findings of 34 subjects with signal-intensity abnormalities associated with developmental venous anomalies. All subjects underwent brain MR imaging with contrast and diffusion and perfusion MR imaging. Regions of interest were placed covering abnormally high signal intensity around developmental venous anomalies on fluid-attenuated inversion recovery imaging, and the same ROIs were drawn on the corresponding sections of the diffusion and perfusion MR imaging. We measured the apparent diffusion coefficient, relative cerebral blood volume, relative mean transit time, and time-to-peak of the signal-intensity abnormalities around developmental venous anomalies and compared them with the contralateral normal white matter. The Mann-Whitney U test was used for statistical analysis. The means of ADC, relative cerebral blood volume, relative mean transit time, and TTP of signal-intensity abnormalities around developmental venous anomalies were calculated as follows: 0.98 ± 0.13 10(-3)mm(2)/s, 195.67 ± 102.18 mL/100 g, 16.74 ± 7.38 seconds, and 11.65 ± 7.49 seconds, respectively. The values of normal WM were as follows: 0.74 ± 0.08 10(-3)mm(2)/s for ADC, 48.53 ± 22.85 mL/100 g for relative cerebral blood volume, 12.12 ± 4.27 seconds for relative mean transit time, and 8.35 ± 3.89 seconds for TTP. All values of ADC, relative cerebral blood volume, relative mean transit time, and TTP in the signal-intensity abnormalities around developmental venous anomalies were statistically higher than those of normal WM (All P < .001, respectively). The diffusion and perfusion MR imaging findings of the signal-intensity abnormalities associated with developmental venous anomaly suggest that the nature of the lesion is vasogenic edema with congestion and delayed perfusion.

Highlights

  • BACKGROUND AND PURPOSEDevelopmental venous anomalies are the most common intracranial vascular malformation

  • The diffusion and perfusion MR imaging findings of the signal-intensity abnormalities associated with developmental venous anomaly suggest that the nature of the lesion is vasogenic edema with congestion and delayed perfusion

  • DWI would discriminate between vasogenic edema and gliosis, and PWI would demonstrate signs of outflow obstruction and venous congestion

Read more

Summary

Objectives

There has been no report of the diffusion and perfusion changes of abnormal SI in the area of DVAs by using diffusion- and perfusion-weighted MR imaging, to our knowledge. the aim of this study was to

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call