Abstract
The diffusion behavior of small molecules in hollow core-shell nanocapsules was studied using pulsed field gradient NMR. By purposefully selecting the liquid saturating the hollow core and the porous shell and the solvent between the nanocapsules, two different situations corresponding to the excluded and admitted molecular exchange between the intra- and intercapsule liquids at the external boundary of the nanoparticles were covered. In the former case, corresponding to the reflective boundary condition for the molecules approaching the nanocapsule boundary, restricted diffusion in the complex pore space formed by the hollow core and the mesoporous shell was observed. The time-dependent diffusivities measured in the experiment were inter-related with the geometry of the intraparticle pore space. The thus assessed structural information was found to be in a good agreement with that provided by electron microscopy. In the case of the molecular exchange occurring between the two pools of molecules in the nanocapsules and between them, the diffusive dynamics of only the molecules remaining in the nanocapsules during the entire observation times was studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Langmuir : the ACS journal of surfaces and colloids
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.