Abstract

We have reanalyzed our former static small-angle x-ray scattering and photon correlation spectroscopy results on dense solutions of charged spherical apoferritin proteins using theories recently developed for studies of colloids. The static structure factors S(q), and the small-wave-number collective diffusion coefficient D(c) determined from those experiments are interpreted now in terms of a theoretical scheme based on a Derjaguin-Landau-Verwey-Overbeek-type continuum model of charged colloidal spheres. This scheme accounts, in an approximate way, for many-body hydrodynamic interactions. Stokesian dynamics computer simulations of the hydrodynamic function have been performed for the first time for dense charge-stabilized dispersions to assess the accuracy of the theoretical scheme. We show that the continuum model allows for a consistent description of all experimental results, and that the effective particle charge is dependent upon the protein concentration relative to the added salt concentration. In addition, we discuss the consequences of small ions dynamics for the collective protein diffusion within the framework of the coupled-mode theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call