Abstract

This paper gives a review on self- and dopant diffusion in germanium (Ge) under thermal equilibrium and irradiation conditions and specifies the underlying mechanisms of diffusion and the point defects involved. Diffusion in Ge under thermal equilibrium conditions is mainly controlled by vacancies. However, Ge interstitials mediate the diffusion under concurrent annealing and irradiation. This is verified by the diffusion behavior of self-atoms, boron, phosphorus and arsenic under proton irradiation. The diffusion under irradiation is explained with the property of the Ge surface that is proposed to be an insufficient sink for Ge interstitials. As a consequence, a supersaturation of self-interstitials is established during irradiation, whereas the vacancy concentration is kept at thermal equilibrium. This explains that under irradiation the diffusion of self- and dopant atoms via self-interstitials becomes visible that is otherwise negligible under conventional annealing conditions. Our findings demonstrate ways to switch between vacancy and self-interstitial mediated diffusion and shows new strategies in the diffusion doping of Ge for technological applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call