Abstract

The topic of the paper is accuracy analysis of acoustic propagation simulation in low Mach number flows, by finite volume co-located discretisation methods of the time-dependent compressible fluid Euler equations that use the concept of convection-pressure splitting (CPS). These are algorithms that split the flux vectors into a part associated to the convection by the fluid particles, and a part associated to the propagation of the pressure waves. For the convection part, the appropriate space discretisation is the upwind one. For the pressure part, there are alternatives. We discern five types of algorithms that all are adapted for use in low Mach number flows, and thus are considered as all Mach number algorithms. We study the behaviour of the different types for the propagation of small pressure perturbations, of discontinuous or smooth shape, in low Mach number flows. We demonstrate that four of the proposed algorithms of convection-pressure split type are dissipative for such applications, although they are designed for low Mach number flows. The objective of the paper is to analyse why some algorithms are appropriate for acoustic propagation simulation and why some are not appropriate.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call