Abstract
The properties of two-dimensional materials are strongly affected by defects that are often present in considerable numbers. In this study, we investigate the diffusion and coalescence of monovacancies in phosphorene using molecular dynamics (MD) simulations accelerated by high-dimensional neural network potentials. Trained and validated with reference data obtained with density functional theory (DFT), such surrogate models provide the accuracy of DFT at a much lower cost, enabling simulations on time scales that far exceed those of first-principles MD. Our microsecond long simulations reveal that monovacancies are highly mobile and move predominantly in the zigzag rather than armchair direction, consistent with the energy barriers of the underlying hopping mechanisms. In further simulations, we find that monovacancies merge into energetically more stable and less mobile divacancies following different routes that may involve metastable intermediates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.