Abstract

Copper thin films were prepared on polyimide (PI) substrates by physical vapor deposition (PVD) and chemical vapor deposition (CVD). Titanium nitride (TiN) diffusion barrier layers were deposited between the copper films and the PI substrates by PVD. Auger electron spectroscopy compositional depth profile showed that TiN barrier layer was very effective in preventing copper diffusion into PI substrate even after the Cu/TiN/PI samples were annealed at 300 °C for 5 h. For the as-deposited CVD-Cu/PI, CVD-Cu/TiN/PI, and as-deposited PVD-Cu/PI samples, the residual stress in Cu films was very small. Relatively larger residual stress existed in Cu films for PVD-Cu/TiN/PI samples. For PVD-Cu/TiN/PI samples, annealing can increase the peeling strength to the level observed without a diffusion barrier. The adhesion improvement of Cu films by annealing treatment can be attributed to lowering of the residual tensile stress in Cu films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.