Abstract

A quantitative description of the transient diffusion and activation of boron during post-implantation annealing steps is one of the most challenging tasks in the simulation of silicon doping processes. In industrially relevant situations, simulations needs to address diffusion at extrinsic concentrations, the agglomeration of self-interstitials, and the formation of boron-interstitial clusters. This paper describes the experimental work performed or used to calibrate model parameters as independently as possible. The combined model is then applied to ultra-shallow junction formation by annealing boron implanted into crystalline or preamorphized silicon. In comparison to bulk silicon, much less is known about diffusion of dopants in SiGe and germanium which are considered as technological options for future technology nodes. Therefore, dedicated experiments were performed to clarify open points in the diffusion behaviour of dopants in these materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.