Abstract
In this study, the removal of monovalent and divalent cations, Na+, K+, Mg2+, and Ca2+, in a diluted solution from Chott-El Jerid Lake, Tunisia, was investigated with the electrodialysis technique. The process was tested using two cation-exchange membranes: sulfonated polyether sulfone cross-linked with 10% hexamethylenediamine (HEXCl) and sulfonated polyether sulfone grafted with octylamine (S-PESOS). The commercially available membrane Nafion® was used for comparison. The results showed that Nafion® and S-PESOS membranes had similar removal behaviors, and the investigated cations were ranked in the following descending order in terms of their demineralization rates: Na+ > Ca2+ > Mg2+ > K+. Divalent cations were more effectively removed by HEXCl than by monovalent cations. The plots based on the Weber–Morris model showed a strong linearity. This reveals that intra-particle diffusion was not the removal rate-determining step, and the removal process was controlled by two or more concurrent mechanisms. The Boyd plots did not pass through their origin, and the sole controlling step was determined by film-diffusion resistance, especially after a long period of electrodialysis. Additionally, a semi-empirical model was established to simulate the temporal variation of the treatment process, and the physical significance and values of model parameters were compared for the three membranes. The findings of this study indicate that HEXCl and S-PESOS membranes can be efficiently utilized for water softening, especially when effluents are highly loaded with calcium and magnesium ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.