Abstract

We study the performance of diffusion least-mean squares algorithms for distributed parameter estimation in multi-agent networks when nodes exchange information over wireless communication links. Wireless channel impairments, such as fading and path-loss, adversely affect the exchanged data and cause instability and performance degradation if left unattended. To mitigate these effects, we incorporate equalization coefficients into the diffusion combination step and update the combination weights dynamically in the face of randomly changing neighborhoods due to fading conditions. When channel state information (CSI) is unavailable, we determine the equalization factors from pilot-aided channel coefficient estimates. The analysis reveals that by properly monitoring the CSI over the network and choosing sufficiently small adaptation step-sizes, the diffusion strategies are able to deliver satisfactory performance in the presence of fading and path loss.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.