Abstract

Using intensity autocorrelation of multiply scattered light, we show that the increase in interparticle interaction in dense, binary colloidal fluid mixtures of particle diameters 0.115µm and 0.089µm results in freezing into a crystalline phase at volume fractionφ of 0.1 and into a glassy state atφ=0.2. The functional form of the field autocorrelation functiong(1)(t) for the binary fluid phase is fitted to exp[−γ(6k02Defft)1/2] wherek0 is the magnitude of the incident light wavevector andγ is a parameter inversely proportional to the photon transport mean free pathl*. TheDeff is thel* weighted average of the individual diffusion coefficients of the pure species. Thel* used in calculatingDeff was computed using the Mie theory. In the solid (crystal or glass) phase, theg(1)(t) is fitted (only with a moderate success) to exp[−γ(6k02W(t))1/2] where the mean-squared displacementW(t) is evaluated for a harmonically bound overdamped Brownian oscillator. It is found that the fitted parameterγ for both the binary and monodisperse suspensions decreases significantly with the increase of interparticle interactions. This has been justified by showing that the calculated values ofl* in a monodisperse suspension using Mie theory increase very significantly with the interactions incorporated inl* via the static structure factor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.