Abstract

The influence of the polysaccharide pectin on the gelation of acidified milk is studied in concentrated, undiluted, quiescent systems, primarily using diffusing wave spectroscopy. For pectins with a low degree of methylesterification (DM), interactions with milk-serum calcium yielded precipitated polysaccharide aggregates, even without acidification, that subsequently did not interact with casein micelles. However, high DM fine structures do not interact significantly with serum-calcium and absorb onto casein micelles as the pH is reduced below 5. A limited surface coverage of high DM pectin facilitates efficient bridging which enhances the rate of micelle aggregation and subsequent gelation and produces a clear signature in the shape of the measured MSD. The work highlights the fact that the behaviour of pectin in milk systems depends not only on the interaction of different polymeric fine structures with casein micelles, but also to a large extent on the interactions with calcium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call