Abstract

The objective of the current work was to establish the effect of flux-cored arc welding (FCAW) parameters, such as welding current, contact-tip to workpiece distance (CTWD) and shielding gas type, on diffusible hydrogen content for single run, horizontal position, bead-on-plate welds using seamed and seamless rutile consumable wires. The work included an investigation of arc characteristics under typical welding conditions, using high-speed digital imaging and laser backlighting, in order to provide information on metal transfer and arc length. The work has shown that under most conditions investigated, the hydrogen levels for the seamed rutile wire were above the 10 ml/100 g specified by the consumable’s classification (H10). In contrast, the seamless wire met the requirements of the H5 classification for all welding conditions investigated. In general, lower diffusible hydrogen levels were achieved when using CO2 shielding gas, although the effect is less significant with the H5 seamless rutile wire. It is further concluded that the time that the wire resides in the resistive heating zone, tRHZ, and the arc length are important factors in determining diffusible hydrogen content.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.