Abstract

A phase-field free-energy functional for the solvation of charged molecules (e.g., proteins) in aqueous solvent (i.e., water or salted water) is constructed. The functional consists of the solute volumetric and solute-solvent interfacial energies, the solute-solvent van der Waals interaction energy, and the continuum electrostatic free energy described by the Poisson-Boltzmann theory. All these are expressed in terms of phase fields that, for low free-energy conformations, are close to one value in the solute phase and another in the solvent phase. A key property of the model is that the phase-field interpolation of dielectric coefficient has the vanishing derivative at both solute and solvent phases. The first variation of such an effective free-energy functional is derived. Matched asymptotic analysis is carried out for the resulting relaxation dynamics of the diffused solute-solvent interface. It is shown that the sharp-interface limit is exactly the variational implicit-solvent model that has successfully captured capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states of underlying biomolecular systems as found in experiment and molecular dynamics simulations. Our phase-field approach and analysis can be used to possibly couple the description of interfacial fluctuations for efficient numerical computations of biomolecular interactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.