Abstract

A new method to calibrate detectors for elastic light scattering (ELS) measurement based on diffuse scattering from a Lambertian surface is presented. The method produces a calibration signal that is approximately seven orders of magnitude larger than a propane gas Rayleigh scattering calibration. The method also allows for calibration of detectors such as photodiodes, which are not sensitive enough to detect Rayleigh scattering for calibration but possess characteristics desirable for the measurement of soot ELS. Since the method is only suitable for backward scattering calibrations, transfer of calibration data from a backward- to a forward-oriented detector is accomplished with a secondary laser and integrating sphere. In demonstration experiments, calibration constants for photomultiplier tube (PMT) detectors obtained using both Rayleigh scattering and diffuse surface scattering agreed within experimental uncertainties as did measurements of in-flame scattering coefficients obtained with PMTs and photodiodes. However, achievable uncertainties with the diffuse-surface calibration approach were significantly reduced. More importantly, by enabling the use of photodiode detectors in ELS measurements, the new method facilitates operation at higher photon fluxes resulting in improved signal-to-noise ratios, reduced influence of photon shot noise, and the ability to achieve higher dynamic range in transient measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.