Abstract

This contribution presents a numerical approach to quantify the response of an absorber in a diffuse reverberation room. Conventionally, this is done by considering an infinite absorber coupled to an acoustic halfspace. It is, however, well known that the diffuse absorption coefficient for a finite absorber can be quite different due to what is referred to in literature as the edge effect. A finite size correction has been developed previously, but it is only applicable to homogeneous absorbers and is based on a computationally costly quintuple integration. This contribution presents an alternative approach in which a deterministic model, e.g. using the finite element or modal transfer matrix method, is coupled with a statistical model of the room using a hybrid deterministic-statistical energy analysis framework. With this framework, also the theoretical uncertainty on this diffuse sound absorption that is inherent in the diffuse field assumption can be quantified, i.e. the variance of sound absorption results that can be theoretically expected across an ensemble of reverberation rooms of the same volume. The methodology is numerically and experimentally validated for several absorber types.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call