Abstract

UV-visible diffuse reflectance (DR) spectra of the fibrous proteins wool and feather keratin, silk fibroin and bovine skin collagen are presented. Natural wool contains much higher levels of visible chromophores across the whole visible range (700-400nm) than the other proteins and only those above 450nm are effectively removed by bleaching. Both oxidative and reductive bleaching are inefficient for removing yellow chromophores (450-400nm absorbers) from wool. The DR spectra of the four UV-absorbing amino acids tryptophan, tyrosine, cystine and phenylalanine were recorded as finely ground powders. In contrast to their UV-visible spectra in aqueous solution where tryptophan and tyrosine are the major UV absorbing species, surprisingly the disulphide chromophore of solid cystine has the strongest UV absorbance measured using the DR remission function F(R)(∞). The DR spectra of unpigmented feather and wool keratin appear to be dominated by cystine absorption near 290nm, whereas silk fibroin appears similar to tyrosine. Because cystine has a flat reflectance spectrum in the visible region from 700 to 400nm and the powder therefore appears white, cystine absorption does not contribute to the cream colour of wool despite the high concentration of cystine residues near the cuticle surface. The disulphide absorption of solid L: -cystine in the DR spectrum at 290nm is significantly red shifted by ~40nm relative to its wavelength in solution, whereas homocystine and lipoic acid showed smaller red shifts of 20nm. The large red shift observed for cystine and the large difference in intensity of absorption in its UV-visible and DR spectra may be due to differences in the dihedral angle between the crystalline solid and the solvated molecules in solution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.