Abstract

Diffuse reflectance IR spectroscopy is used to study hydrogen and deuterium adsorption on zinc oxide at room temperature and 77 K. At room temperature, H2 and D2 molecules are dissociatively adsorbed with the formation of hydrides and hydroxy groups of three types. At 77 K, diffuse reflectance spectra reveal the bands from molecular hydrogen and deuterium in addition to the dissociatively adsorbed forms. The presence of several bands of stretching H–H and D–D vibrations points to the nonuniformity of adsorption sites. This nonuniformity is also confirmed by the fact that, after heating zinc oxide from 77 K to room temperature in an atmosphere of hydrogen, only an insignificant portion of adsorbed molecular hydrogen dissociates. Most of dissociatively adsorbed hydrogen is formed without a molecular precursor. The dissociation of H2 and D2 most likely occurs on very active adsorption species so rapidly that the molecular precursor is not observed. The bond energy in molecular deuterium precursors of dissociation estimated from the fundamental vibration frequency and the overtone of D–D vibrations suggests moderate excitation of the bond. This agrees well with the conclusion that the dissociative adsorption of hydrogen and deuterium occurs without a molecular precursor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.