Abstract

Imaging determinations of the spatial extent of diffuse low-grade gliomas (DLGGs) are of paramount importance in evaluating the risk-to-benefit ratio of surgical resection. However, it is not clear how accurately preoperative conventional MRI can delineate DLGGs. We report a retrospective histologic and imaging correlation study in 16 adult patients who underwent serial stereotactic biopsies for the diagnosis of untreated supratentorial well-defined and non-contrast-enhanced DLGG, in whom biopsy samples were taken within and beyond (OutBSs) MRI-defined abnormalities. Thirty-seven OutBSs that extended from 10 to 26 mm beyond MRI-defined abnormalities were studied. Immunostaining revealed MIB-1-positive cells (i.e., cycling cells) in all but 2 of the OutBSs. None of the MIB-1-positive cells coexpressed glial fibrillary acidic protein, and all of them coexpressed OLIG2. MIB-1-positive cells were cycling isolated tumor cells, because 1) their morphologic characteristics reflected those of tumor cells, 2) the number of MIB-1-positive cells per square centimeter was significantly higher than that of controls, 3) the number of MIB-1-positive cells per square centimeter was positively correlated with the tumor growth fraction (p = 0.012), and 4) the number of MIB-1-positive cells per square centimeter in OutBSs decreased with distance from the tumor (p = 0.003). This study demonstrates, using a multiscale correlative approach, that conventional MRI underestimates the actual spatial extent of diffuse low-grade gliomas (DLGGs), even when they are well delineated. These results suggest that an extended resection of a margin beyond MRI-defined abnormalities, whenever feasible in noneloquent brain areas, might improve the outcome of DLGGs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.