Abstract

In 2012, whole-transcriptome sequencing analysis led to the discovery of recurrent fusions involving the FGFR3 and TACC3 genes as the main oncological driver in a subset of human glioblastomas. Since then, FGFR3-TACC3 fusions have been identified in several other solid cancers. Further studies dissected the oncogenic mechanisms of the fusion protein and its complex interplay with cancer cell metabolism. FGFR3-TACC3 fusion-driven gliomas emerged as a defined subgroup with specific clinical, histological, and molecular features. Several FGFR inhibitors were tested in FGFR3-TACC3 fusion-positive gliomas and proved some efficacy, although inferior to the results seen in other FGFR3-TACC3 fusion-driven cancers. In this review, we summarize and discuss the state-of-the-art knowledge resulting from a 10-year research effort in the field, its clinical implications for glioma patients, the potential reasons for targeted therapy failures, and the perspective of emerging treatments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.