Abstract

Our Galaxy hosts the annihilation of a few $\times 10^{43}$ low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesised in stars, stellar remnants, and supernovae. For decades, however, there has been no positive identification of a main stellar positron source leading to suggestions that many positrons originate from exotic sources like the Galaxy's central super-massive black hole or dark matter annihilation. %, but such sources would not explain the recently-detected positron signal from the extended Galactic disk. Here we show that a single type of transient source, deriving from stellar populations of age 3-6 Gyr and yielding ~0.03 $M_\odot$ of the positron emitter $^{44}$Ti, can simultaneously explain the strength and morphology of the Galactic positron annihilation signal and the solar system abundance of the $^{44}$Ti decay product $^{44}$Ca. This transient is likely the merger of two low-mass white dwarfs, observed in external galaxies as the sub-luminous, thermonuclear supernova known as SN1991bg-like.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.