Abstract

Massive multiple-input multiple-output (M-MIMO) aided positioning technologies have been recently recognized as promising solutions to fulfil the high accuracy requirement of indoor localization systems. In this paper, exploiting a distributed M-MIMO framework, we propose to employ a deep belief network (DBN) to analyze the received signal strengths (RSS) generated by a diffraction model, where the impact from interfering persons on the targeted user equipment (UE) is considered. Next, the preliminary DBN estimates are forwarded to a long-short term memory network (LSTMN), where the trajectory information of the targeted UE can be extracted based on much less historical trajectory information than existing solutions. Then, the three-dimension (3D) coordinates of the UE’s positions can be estimated with a back propagation neural network (BPNN) which combines the outputs of DBN and LSTMN. Finally, extensive simulation results are provided to demonstrate the effectiveness of the proposed BPNN scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call