Abstract

For a long time volume Holographic Optical Elements (vHOE) have been discussed as an alternative, but were hampered by a lack of suitable materials. They provide several benefits over surface corrugated diffractive optical element like high diffraction efficiency due to their ability to reconstruct a single diffraction order, freedom of optical design by freely setting the replay angles and adjusting their bandwidth by a selection of the vHOE’s thickness. Additional interesting features are related to their high Bragg selectivity providing transparent films for off-Bragg illumination. In this paper we report on our newly developed photopolymer film technology (Bayfol® HX) that uniquely requires no post processing after holographic exposure. We explain the governing non-local polymerization driven diffusion process leading to an active mass transport triggered by constructive interference. Key aspects of the recording process and their impact on index modulation formation is discussed. The influence on photopolymer film thickness on the bandwidth is shown. A comparison between coupled wave theory (CWT) simulation and experimental results is given. There are two basic recording geometries: reflection and transmission vHOEs. We explain consequences of how to record them properly and discuss in more detail the special challenges in transmission hologram recording. Here beam ratio and customization of photopolymer film properties can be applied most beneficially to achieve highest diffraction efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.