Abstract
Diffractive optical elements are designed and demonstrated as elemental units in photonic gas sensors. Diffraction gratings are written on specially designed photosensitive polymers using photolithographic techniques, as well as on multilayer metal/metal oxide thin film structures. Photonic sensors are implemented using grating structures as the elemental units for the detection of the external agent. These gratings are designed from such materials that show response to the external agent and the sensitivity is increased through the design of the grating. The principle of operation is based on the grating's diffraction efficiency variations due to index of refraction alterations and/or geometrical changes of the grating structure (e.g., groove depth, groove spacing) to external factors. The advantageous characteristics of the presented integrated sensor are the fully reversible behavior at ambient operating conditions, without the need for additional heating or light exposure. Applications of these sensitive photonic sensors so far include water vapor, hydrocarbons, and alcohol detection. The optical designs are based on diffraction efficiency measurements, and incorporate a monochromatic optical source and simple optoelectronic detection components. The photonic sensor integration is based on bulk optics approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.