Abstract

We demonstrate focusing as well as imaging using diffractive microoptics, manufactured by two-photon polymerization grayscale lithography (2GL), that have been 3D printed into porous silicon oxide. While typical doublet lens systems require support structures that hold the lenses in place, our optics are held by the porous media itself, decreasing both the fabrication time and design constraints while increasing the optically active area. Compared to the typical two-photon polymerization fabrication process, 2GL offers better shape accuracy while simultaneously increasing throughput. To showcase 2GL manufactured optics in porous media, we fabricate singlet diffractive lenses with a diameter of 500 µm and numerical apertures of up to 0.6. We measure the intensity distribution in the focal plane, and along the optical axis. Furthermore, we design and fabricate a doublet lens system for imaging purposes with a diameter of 600 µm and thinner than 60 µm. We examine the imaging performance with a USAF 1951 resolution test chart and determine the resolution to be 287 lp/mm. 3D printing in porous SiO2 thus holds great promise for future complex and unconventional microoptical solutions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.