Abstract

The results of theoretical simulation of femtosecond Ti:Sapphire laser pulse propagation in air in the self-focusing and filamentation regimes are presented. The self-focusing of pulsed radiation was analyzed based on the diffraction-ray tracing method, within which the beam power propagates within specific light structures, known as the diffraction-ray tubes. These tubes do not intersect in space and do not exchange their energy, but the changes in their shape and cross-section reflect the physical effects occurring with the radiation during its propagation through the medium. This allows discovering the formation of specific light structures in a laser beam during its self-focusing. One of these structures is the energy-replenishing diffraction-ray tube (ERT), which provides the filamentation domain with the necessary light energy and exists also in the form of a high-intensity light channel during the post-filamentation propagation of a pulse. The dependences of the radius and power of this energy-replenishing tube on the initial beam radius and peak radiation power at a fixed pulse length are derived. It is revealed that the radiation energy expenditure for filamentation decreases as the beam radius increases. The peak power in ERT does not exceed the critical self-focusing power for a Gaussian beam during the post-filamentation propagation of a pulse and weakly depends on the initial pulse parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.