Abstract

Seismic diffractions are the responses of small-scale discontinuous structures. They contain subwavelength geologic information. Thus, diffractions can be used for high-resolution imaging. The energy of diffractions is generally much weaker than that of reflections. Therefore, diffracted energy is typically masked by specular reflected energy. Diffraction/reflection separation is a crucial preprocessing step for diffraction imaging. To resolve the diffraction-separation problem, we have developed a method based on the multichannel singular-spectrum analysis (MSSA) algorithm for diffraction separation by reflection suppression. The MSSA algorithm uses the differences in the kinematic and dynamic properties between reflections and diffractions to suppress time-linear signals (reflections) and separate weaker time-nonlinear signals (diffractions) in the common-offset or poststack domain. For the time-linear signals, the magnitudes of the singular values are proportional to the energy strength of the signals. The stronger the energy of a component of the linear signals is, the larger the corresponding singular values will be. The singular values of reflections and diffractions have dissimilar spatial distributions in the singular-value spectrum because of the differences in their linear properties and energy. Only the singular values representing diffractions are selected to reconstruct seismic signals. Synthetic data and field data are used to test our method. The results reveal the good performance of the MSSA algorithm in enhancing diffractions and suppressing reflections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.